Assessment Schedule - 2008

Chemistry: Describe properties of aqueous systems (90700)

Evidence Statement

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE (a)(i)	X drawn on curve at pH 9 (accept 8.5–9.5).	pH or graph correct.	Both correct.	
(ii)	End of graph is drawn towards an asymptote line at pH 13. 14 pH 12 10 8	- Graph line must go above 12 and not touch 13. Line must also not trend upwards at the end.		
(b)	$HN_3(aq) + H_2O \xrightarrow{\longrightarrow} H_3O^+(aq) + N_3^-(aq)$ $K_a(CH_3COOH) = \underbrace{[H_3O^+][N_3^-]}_{[HN_3]}$	$[H_3O^+]$ determined from pH OR K_a determined from p K_a .	Concentration of acid solution correctly determined. (Must have correct unit)	
	pH = 2.6 so $[H_3O^+(aq)] = 2.51 \times 10^{-3} \text{ mol } L^{-1} = [N_3^-(aq)]$ p $K_a(HN_3) = 4.72$, $K_a(HN_3) = 1.91 \times 10^{-5}$ $K_a(HN_3) = 1.91 \times 10^{-5} = \frac{(2.51 \times 10^{-3})^2}{x}$ $x = 0.331$ ie $[HN_3(aq)] = 0.331 \text{ mol } L^{-1}$ (Allow 0.330 and 0.33)	(As long as solution is identified.)		

TWO (a)(i) (ii)	$HOBr(aq) + H_2O \longrightarrow H_3O^+(aq) + OBr^-(aq)$ $K_a(HOBr) = \underline{[H_3O^+][OBr^-]}$ $[HOBr]$	Equation and K_a expression correct. Equation must have equilibrium arrow, states not required. K_a expression must have square brackets.		
(b)	$K_{\rm a}({\rm HOBr}) = [{\rm H}_3{\rm O}^+] [{\rm OBr}^-] = 10^{-8.62} = 2.40 \times 10^{-9}$ $[{\rm HOBr}]$ $[{\rm H}_3{\rm O}^+(aq)] = [{\rm OBr}^-(aq)] = x \bmod {\rm L}^{-1}$ $\frac{x^2}{0.0525} = 2.40 \times 10^{-9} x = [{\rm H}_3{\rm O}^+(aq)] = 1.12 \times 10^{-5}$ ${\rm pH} = 4.95 ({\rm allow} \ 4.9 \ {\rm or} \ 4.950)$	Method correct but minor arithmetical error. OR K_a determined from pK_a .	pH calculated correctly.	
THREE (a) (i) (ii)	$PbCl2(s) \iff Pb2+(aq) + 2 Cl-(aq)$ $Ks(PbCl2) = [Pb2+] [Cl-]2$	Equation and K_s correct. States do not need to be shown. Square brackets required. Equilibrium arrow not required.		
(b)	Let s be the solubility $K_s = s (2s)^2$ $1.60 \times 10^{-5} = 4s^3$ $s = 0.0159 \text{ mol L}^{-1}$ solubility of PbCl ₂ (s) = 0.0159 mol L ⁻¹ (allow 0.0160 or 0.016)	Method correct but minor arithmetical error e.g cube root done before divided by 4 Or rounding error, eg 0.0158	Solubility calculated correctly. Units not required.	
(c)	$n(\text{Pb}(\text{NO}_3)_2) = \frac{1.00 \text{ g}}{331 \text{ g mol}^{-1}} = 3.02 \times 10^{-3} \text{ mol}$ If the lead nitrate is dissolved in the 500 mL, then $[\text{Pb}^{2+}] = 6.04 \times 10^{-3} \text{ mol L}^{-1}$ $Q_s = [\text{Pb}^{2+}] [\text{CI}^-]^2 = 6.04 \times 10^{-3} \times (0.440)^2 = 1.17 \times 10^{-3}$ As $Q_s (1.17 \times 10^{-3})$ exceeds $K_s (1.60 \times 10^{-5})$, a precipitate will form.	ONE step correct. Eg: Correct [Pb ²⁺]. Correct solubility calculation from incorrect inputs. Correct conclusion from incorrect inputs.	Method uses correct IP expression but has one error. Eg [Pb ²⁺] incorrect or fails to square 0.440. Correct conclusion from calculated answer. Incorrect or no conclusion from correct calculation.	Answer correct with supporting calculation and reasoning.

FOUR	$Al(OH)_3(s) \iff Al^{3+}(aq) + 3 OH^{-}(aq)$	Any TWO of	Solubility in either acidic or basic conditions explained	Full discussion including equations, with equations
	Acidic conditions When the pH is less than 4, $[H_3O^+] > [OH^-]$ and the $[H_3O^+]$ ions react with OH- ions from Al(OH) ₃ . ie $H_3O^+ + OH^- \rightarrow 2H_2O$	Correct K_s equation low pH [H ₃ O ⁺] > [OH ⁻]	with all relevant equations (Must say acidic conditions H ₃ O ⁺ removes OH ⁻)	related to solubility.
	(OR Al(OH) ₃ (s) + 3 H ₃ O ⁺ \rightarrow Al ³⁺ (aq) + 6 H ₂ O) The decrease in [OH ⁻] from the solubility equilibrium causes the position of equilibrium to shift further to the right so that more Al(OH) ₃ is dissolved.	high pH [H ₃ O ⁺] < [OH ⁻]	OR Solubility in both acidic and basic conditions explained	
	Basic conditions	acidic conditions H ₃ O ⁺ removes OH ⁻	without all equations.	
	When the pH is greater than 10, $[H_3O^+] < [OH^-]$ and the OH ⁻ ions react with Al ³⁺ ions from $[Al(OH)_4]^-$ ie $Al^{3+} + 4 OH^- \rightarrow [Al(OH)_4]^-$	basic conditions OH ⁻ removes Al ³⁺ / forms [Al(OH) ₄] ⁻ .		
	(OR Al(OH) ₃ (s) + OH ⁻ \rightarrow [Al(OH) ₄] ⁻) The decrease in [Al ³⁺] from the solubility equilibrium causes the position of equilibrium to shift further to the right so that more Al(OH) ₃ is dissolved.			

			T	Ī
(a) (i) (ii)	$K_a(\text{NH}_4^+) = \underbrace{[\text{H}_3\text{O}^+] [\text{NH}_3]}_{[\text{NH}_4^+]}$ so $[\text{H}_3\text{O}^+] = K_a(\text{NH}_4^+) \times \underbrace{[\text{NH}_4^+]}_{[\text{NH}_3]}$ Solution A By calculation $[\text{NH}_4^+] = [\text{NH}_3] = 50/100 \times 1.00 = \textbf{0.500 mol L}^{-1}$ therefore $[\text{NH}_4^+] / [\text{NH}_3] = 1$ So $[\text{NH}_3] = \text{Ka}(\text{NH}_4^+)$ ie $pH = pKa = 9.24$ Or by reasoning Since equal volumes of solutions with equal concentrations of each species are mixed. $[\text{NH}_4^+] = [\text{NH}_3]$ So, $[\text{H}_3\text{O}^+] = \text{Ka}(\text{NH}_4^+)$ ie $pH = pKa = 9.24$ Solution B Because the added HCl reacts with ammonia to form ammonium ions $[\text{NH}_3(\text{aq}) + \text{H}_3\text{O}^+(\text{aq}) \rightarrow \text{NH}_4^+(\text{aq}) + \text{H}_2\text{O}$ By calculation nHCl added = $[\text{O.010} \times \text{O.025} = 2.5 \times 10^{-4} = \text{nNH}_4^+$ nNH ₃ remaining = $[\text{O.010} \times \text{O.050} = 5.0 \times 10^{-4} - 2.5 \times 10^{-4} = 2.5 \times 10^{-4}$ so $[\text{NH}_4^+] = [\text{NH}_3] = 2.5 \times 10^{-4} / [\text{O.075} = 3.33 \times 10^{-3}]$ (NOT $[\text{NH}_3] = 6.67 \times 10^{-3}$) So, $[\text{H}_3\text{O}^+] = K_a(\text{NH}_4^+)$ ie $[\text{pH} = pK_a = 9.24]$	Correct process for calculation of pH of ONE solution clearly shown but answer is incorrect OR Ka expression correct and answer attempted with some correct information. Eg the formula for finding $[H_3O^+]$ OR pH OR a concentration correct OR calculating $Ka = (5.75 \times 10^{-10})$	Correct pH of ONE solution either by calculation or explanation.	Correct pH of BOTH solutions.
	Or by reasoning Since the volume of HCl added is half the volume of NH ₃ and the concentrations are the same, $n(H_3O^+)$ added equals $n(NH_4^+)$ formed and also equals $n(NH_3)$ remaining, therefore $[NH_4^+] = [NH_3]$ So, $[H_3O^+] = K_a (NH_4^+)$ ie $pH = pK_a = 9.24$			
	(i) Both solutions A and B can act as buffers because both contain reasonable amounts of a weak acid and its conjugate base/ NH ₄ ⁺ and NH ₃ . The ammonium ion can absorb added base and the ammonia can absorb added acid (or equations) thereby minimising changes in pH.	Recognises that a buffer solution exists in A and B (can be implied) OR recognises A or B is a buffer with some more detail.	Recognises A and B are buffers. Identifies the presence of a weak acid and its conjugate base by name or formula in both A and B.	Effect of adding the strong base discussed for each solution. Answer includes comparison of buffering effect of solutions A and B.
	(ii) Sodium hydroxide is a strong base and will accept H^+ from the NH_4^+ ions in solution. $OH^- + NH_4^+ \rightarrow NH_3 + H_2O$.	eg contains a weak acid and its conjugate base resists changes in pH	Explains the function of a buffer.	Correct equation included for buffer solutions.
	and so the pH will only increase very slightly as the effect of added OH ⁻ ions is minimised.	gives the correct equation.		
	The lower amount / concentration / number of $\mathrm{NH_4}^+$ ions in solution B limit the buffering properties as these would be used up more rapidly, so the pH will increase / change faster than with Solution A.			
	Accept evidence for part (i) and (ii) from either section.			

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Total of SIX opportunities answered at Achievement level or higher.	Total of at least SEVEN opportunities answered with FOUR at Merit level or higher.	Total of at least SEVEN opportunities answered with TWO at Excellence level and THREE at Merit level or higher.
$6 \times A$	$4 \times M + 3 \times A$	$2 \times E + 3 \times M + 2 \times A$